
 
 
 

Generalized Balance Equations - thermofluids.net 
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Entropy: 
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Customized Balance Equations - thermofluids.net 
 

Closed  Steady Systems (Wall, Light bulb, Laptop adapter, Gear box, closed cycles) 
 

 

Mass Equation: constantm   (1) 

 

Energy Equation:  ext ext sh el0     kW   where,   BQ W W W W W      (2) 

Entropy Equation: gen gen
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Single-Flow Open-Steady Systems (pumps, turbines, nozzles, valves, pipes, etc.)  
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Closed Processes (Heating water in a tank, piston-cylinder compression)  
 

Mass:  constant kgm   (1) 
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Open Processes (Filling an evacuated tank, filling a propane cylinder, discharge from a tank) 
 

Mass:      kgf b i em m m m m      (1) 
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Manual State Evaluation 
thermofluids.net>Tables  

 
General State Related Equations: ( applies to any substance)  
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SL Model:  (Assumptions: constant
vc =constant: see Tables>Table-A)  
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PG Model: (Assumptions: p RT ;  
vc =constant: see Tables>Table-C) 
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For polytropic process replace k  with n    

IG Model: (Assumptions: p RT ;  
vc  is function of T : see Tables>Table-D)    
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   h h T ,  u u T   ,s s p T   (use ideal gas tables);  Rcc vp   (13) 

 
The temperature dependent part of entropy is separated from the pressure dependent part: 
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PC Model: (see Tables>Table-B) Determine the phase, L, V or M, of the fluid. For vapor use superheated Table. 

For mixture, use saturation table (if the quality is not known, your goal should be to evaluate the quality 
first which is the key to finding all specific properties of a mixture). For liquid use the CL sub-model. 

CL Sub-Model: v , u and s  depend on T  only. Therefore, use the temperature-sorted saturation table to 

obtain 
@f Tv v , 

@f Tu u  or 
@f Ts s . To find h , use 

@ @f T f Th u pv u pv    . 

 

RG Model: (see Tables>Table-E) RTTpZp rr ),(  where Z, the compressibility factor, is obtained from a 

chart.  and r rp T  are pressure and temperature normalized by the corresponding critical properties. Just 

like entropy in the PG or IG model, h and u  also have two parts, one temperature dependent and another 

pressure dependent, in the RG model. The departure of these values from the corresponding IG values are 

tabulated in the enthalpy and entropy departure charts as functions of  and r rp T . Therefore, the complete 

state can be evaluated if  and r rp T  are given. 


