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The ideal gas (IG) model is probably the most well-known gas models in engineering thermodynamics. In this paper, we extend
the IG model into an ideal gas equilibrium (IGE model) mixture model by incorporating chemical equilibrium calculations as
part of the state evaluation. Through a simple graphical interface, users can set the atomic composition of a gas mixture. We
have integrated this model into a thermodynamic web portal TEST (http://thermofluids.sdsu.edu/) that contains Java applets for
various models for properties of pure substances. In the state panel of the IGE model, the known thermodynamic properties are
entered. For a given pressure and temperature, the mixture’s Gibbs function is minimized subject to atomic constraints and the
equilibrium composition along with thermodynamic properties of the mixture are calculated and displayed. What is unique about
this approach is that equilibrium computations are performed in the background, without requiring any major change in the
familiar user interface used in other state daemons. Properties calculated by this equilibrium state daemon are compared with
results from other established applications such as NASA CEA and STANJAN. Also, two different algorithms, an iterative approach
and a direct approach based on minimizing different thermodynamic functions in different situation, are compared.

1. Introduction

The accuracy of a solution to an engineering thermody-
namics problem lies in large part to the material model
chosen to model a working fluid. Generally speaking, there
are five approaches one can take when modeling a working
substance: one can choose to model a substance as follows:

(i) a material that undergoes a change in phase,

(ii) a condensate (i.e., a solid or liquid substance),

(iii) an ideal gas,

(iv) a perfect gas,

(v) a real gas.

The particular model chosen will dictate which set of
equations to use when calculating thermodynamic states.
Generally, the simpler the model chosen, the simpler the
calculation becomes. The simplest of all models is the
perfect gas model, and this model is usually selected when

performing state approximations with pencil and paper. But,
simplicity tends to come at the expanse of accuracy. The
more complex models require either tables of precomputed
results or a computer program that implements a numerical
algorithm to obtain a solution.

Computing the state of substances that undergo a change
in phase requires saturation and superheated tables. For
example, when modeling a thermodynamic cycle that uses
water as a working fluid, Steam Tables are used to determine
the saturation pressure, specific volume, internal energy,
enthalpy, and entropy of steam at a given temperature.
Other substances such as R-12, NH3, and R-134 a, should be
modeled using a phase change model since there is likely the
possibility of a phase transformation during a cycle.

A condensate is a working substance that resides in a solid
or liquid phase for the duration of a cycle. Condensates can
be modeled as materials that have a constant density and a
constant heat capacity which is equal at constant pressure or
constant volume.
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The state of an ideal gas is modeled using the ideal gas
equation,

pv = RT. (1)

In this model, heat capacity is temperature dependent. The
perfect gas model obeys the ideal gas equation; however,
heat capacity is considered constant, which renders analytical
integration over a temperature range easier to perform when
approximating a change in enthalpy or entropy. In this sense,
a perfect gas can be considered as a simplified ideal gas.

The real gas model uses a generalized compressibility
chart where (1) is modified such that

pv = zRT , (2)

with z representing a compressibility factor. The real gas
model uses the compressibility factor to account for how a
gas deviates from the ideal gas model at low temperatures
or high pressures. A table of pre-computed compressibility
factors is used to determine the proper value of z when
computing the state of a particular gas.

The ideal gas law was first introduced by Clapeyron in
his 1834 work entitled Mémoire sur la puissance motrice de la
chaleur “Memoir on the motive power of heat.” This model
assumes that a gas consists of infinitesimally tiny particles
where the length scale of a gas molecule diameter is much
smaller than the length scale of distances traveled when inter-
molecular collisions occur. The ideal gas model also assumes
that gas molecules interact only through brief, infrequent,
and elastic collisions [1]. Thus, under this model, when two
or more gas molecules collide, the total translational kinetic
energy of the molecules is conserved. At low temperatures
and high pressures where molecules have a higher probability
of interaction, the ideal gas law is less accurate and fails
to adequately describe the state of a gaseous species. Many
attempts have been made over the years to improve the ideal
gas law to account for molecular interaction. Most notable
was J. D. van der Waals who, in 1873, modified the ideal
gas law by accounting for the effective volume gas molecules
have to occupy by subtracting from v the volume b where b is
the volume of one mole of molecules. Second, van der Waals
added another term to account for molecular attractive
forces which varies proportionally to the inverse square of
the distance between molecules. With a representing the
constant of proportionality, van der Waals’ model is given by

P = RT

v − b
− a

v2
. (3)

For a given species, the constants a and b are determined
by making use of the fact that the critical point lying on a
critical isotherm on a pressure versus molar volume plot is
an inflection point. By setting

(
∂P

∂v

)
Tc

= 0,

(
∂2P

∂v2

)
Tc

= 0, (4)

one will obtain two equations in the two unknowns, a and b,
which can then be computed from knowledge of the species’

critical temperature and pressure, Tc, Pc, respectively. One
deficiency with the van der Waals model is a lack of
accounting for intermolecular repulsive forces. Since 1873,
many other equations of state (EOS) have been proposed to
account for both attractive and repulsive forces. One of the
most recognized is the model proposed in 1948 by Redlich
and Kwong [2],

P = RT

v − b
− a√

Tv(v + b)
. (5)

The Redlich and Kwong model preserves the first term of
the van der Waals model, but makes an adjustment to the
second by introducing a dependence on temperature and
the effective volume to account for repulsive forces. Species
specific values for the two constants a and b are then found
using the same technique used in the van der Waals model.
Many other equations of state have been proposed (Peng
and Robinson [3], Kerrick and Jacobs [4]) with each model
having its own strengths and weaknesses. For example, while
the Redlich and Kwong model does a good job representing
the state of many gasses at low temperatures and high
pressures, the Kerrick and Jacobs EOS does a good job at high
temperatures and high pressures but not low temperatures
and high pressures. Nevertheless, the standard ideal gas law
of Clapeyron is the simplest model and is widely used in
most combustion research and textbooks for educational
purposes. Although we are extending the IG model, the same
methodology can be applied to other equations of state where
the equilibrium distribution is computed simultaneously
with the thermodynamic state.

The computational method employed in this work is
based on the direct minimization of Gibbs free energy
at either constant temperature and pressure or constant
enthalpy and pressure. The direct free energy minimization
algorithm was originally proposed by White et al. in 1958 [5]
and further developed by Zeleznik and Gordon throughout
the 1960s [6–10]. The algorithm was originally developed
for computing the chemical equilibria of ideal systems
that characterize rocket-propellant and other combustion
scenarios. Assuming an ideal-gas behavior of such systems
is not unreasonable, due to the high temperature and atmo-
spheric level pressures involved. The IGE model discussed
in this work assumes a single gas phase and one or more
pure condensed (solid or liquid) phases. Inclusion of a
pure condensed phase is performed after the equilibrium
composition is computed for the gas phase. Then, a vapor
pressure test is performed to determine if the inclusion of
a pure condensed phase lowers the system Gibbs energy
[8, 11]. Upon adding a condensate from the list of atomically
feasible candidate species, the equilibrium composition is
computed again. This iterative process is repeated until all
atomically feasible condensates are considered for inclusion
in the final equilibrium products mixture.

Because our IGE model and software implementation is
intended to be used to solve primarily high-temperature/
low-pressure gas phase problems that arise in combustion
scenarios, the computation of chemical equilibria for non-
ideal systems is not supported. Much work, however, has
been done in the area of nonideal equilibrium computation.
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Such techniques usually employ stoichiometric and extent of
reaction equations to solve multiphase equilibria in nonideal
systems. Of particular importance is the work of Castier et al.
[12] and Michelsen [13, 14] in which a numerical technique
is presented that simultaneously computes the equilibrium
distribution while discovering all thermodynamically feasible
phases, without requiring the user to prespecify the num-
ber and type of phases existing in the equilibrium state.
Castier’s method employs a stoichiometric formulation and
demonstrates a second-order convergence rate. Nonidealities
are handled by reformulating reaction extent equations to
include a fugacity and activity coefficient model for gas
and liquid phase calculations, respectively. Extent of reaction
methods used to determine chemical and phase equilibria
in nonideal systems has also been explored by Economou
et al. [15]. Economou’s method is based on computing
the equilibrium constant for a reaction as a function of
the fugacity of each component and then using an EOS
that accounts for nonideal behavior to compute fugacity
coefficients. Economou shows how a component’s fugacity
coefficient ϕ can be calculated by expressing an EOS in terms
of a compression factor Z that includes an ideal constituent,
a contribution that accounts for molecular repulsive forces,
and a contribution that accounts for molecular attractive
forces. Economou et al. applied their model using the Peng-
Robinson EOS as well as the Soave modification to the
Redlich-Kwong EOS [16]. The Redlich-Kwong-Soave EOS
given by

P = RT

v − b
− aα

v(v + b)
, (6)

includes an additional factor α that is multiplied by the
attractive parameter a in (5) and is a function of tem-
perature and an acentric factor ω that characterizes the
nonsphericity of molecules. Application of the model shows
how both equations of state accurately capture the effect
of high pressure and low temperature on reaction extent
and phase-equilibria computations. A modification of the
Peng-Robinson EOS can be made that allows the model to
better capture vapor pressures of pure fluids. The so-called
PRSV2 EOS [17] reformulates the attractive term in the
Peng-Robinson EOS and is given by

P = RT

v − b
− aα

v(v + b) + b(v − b)
, (7)

where three parameters, κ1, κ2, and κ3 are used to compute
a factor κ that modifies the attractive term factor α. In this
case, α is a function of κ and a reduced temperature Tr with
κ being a function of the acentric factor ω. Optimal values
for κ1, κ2, and κ3 for many fluids are found in the literature
[18–20]. Llano-Restrepo and Muñoz-Muñoz [21] employed
the PRSV2 EOS with the UNIQUAC activity coefficient
model [22] and the Wong-Sandler (WS) mixing rules [23] to
compute the vapor-liquid equilibrium (VLE) of the ethylene-
ethanol-water ternary system. Llano-Restrepo et al. uses
the flash method described in the work by Sandler [23]
to compute the equilibrium distribution of the liquid and
vapor phases of ethylene-ethanol-water mixtures at 200◦C

and pressures ranging from 30 to 154 atm. Results showed
their numerical model produces mole fraction predictions
that compare well with experimental data obtained from the
hydration of ethylene for synthetic ethanol production. The
Beattie-Bridgeman EOS and the Benedict-Webb-Rubin EOS
are frequently used in mechanical engineering for modeling
gas phase species. The Beattie-Bridgeman EOS [24] is given
by

P = RuT

v2

(
1− c

vT3

)
(v + b)− A

v2 ,

A = A0

(
1− a

v

)
, B = B0

(
1− b

v

)
,

(8)

where A and B are empirical parameters, it is fairly accurate
for species with densities up to 0.8ρcr [25]. The Benedict-
Webb-Rubin EOS [26],

P = RuT

v
+
(
B0RuT − A0 − C0

T2

)
1
v2 +

bRuT − a

v3

+
aα

v6 +
c

v3T2

(
1− γ

v2

)
e−γ/v

2
,

(9)

where the constants a, A0, b, B0, c, C0, α, and γ have been
tabulated for many gas species [27], it is accurate for species
with densities up to 2.5ρcr. Nonetheless, the ideal gas model is
the most straightforward EOS and is routinely employed to
solve most gas phase problems encountered in combustion
products equilibria. For this reason, this work is based on
extending the ideal gas EOS in our online thermodynamics
software suite named TEST to compute the thermodynamic
state of the products of combustion reactions based on a
chemical equilibrium distribution computed assuming an
ideal gas EOS.

2. The IG and IGE Models in Test

The Expert System for Thermodynamics, abbreviated TEST,
is an Internet portal for accessing thermodynamics web
applications [28, 29]. TEST is freely accessible via URL
http://www.thermofluids.net/ and combines applications with
multimedia educational content, such as example problems
with solutions that are typical of those encountered by
university engineering students. In addition, one can access
a variety of thermodynamic charts and tables and fifteen
chapters of animations that illustrate thermodynamic sys-
tems and fundamental concepts. TEST Web applications
are called daemons and are mostly implemented as Java
applets. Recently, a new kind of web application has been
introduced into TEST, termed a Rich Internet Application
or RIA, which is implemented using Adobe Flash [30].
Because these Web applications are accessible online, they
require nothing more than a standard Web browser to
operate, which makes them convenient for researchers,
educators, and students who can use the daemons to solve
fairly complex engineering problems, quickly and efficiently,
without having to download and install platform-specific
software. TEST’s daemons are specially designed to allow a
user to easily specify a thermodynamic problem and then
quickly solve follow-up or closely related problems known as
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Figure 1: The single species variant of the TEST IG model system state daemon: computing the specific enthalpy of oxygen gas at 1 atm and
3000 K.

what if? scenarios. For example, using the TEST Refrigeration
Cycle daemon, one could configure a problem to solve for
the cooling power in tons of a refrigeration system that uses
the CFC Freon-12 (R-12 or dichlorodifluoromethane) as a
working fluid. After specifying known inputs to an initial
problem, such as the mass flow rate of the refrigerant and the
temperature of the surroundings, and a solution is obtained,
one can quickly modify an input variable and obtain a
solution to a related problem. For example, the user may
ask “What if R-12 was replaced with a more environmentally
friendly refrigerant such as R-134 a? How would the cooling
power change?” In this case, the user can simply pull down
a menu list of refrigerants, select R-134 a, and click a single
button to compute a new solution. TEST features numerous
daemons that are specifically designed to solve problems
in such areas as IC engines, gas and vapor power cycles,
refrigeration, HVAC, combustion, chemical equilibrium, and
gas dynamics. Furthermore, TEST features general daemons
that can be used to evaluate state properties of various
working substances [31] and perform energy, entropy, and
exergy analysis of generic open and closed thermodynamic
systems.

The latest advancements in TEST have been in the
area of chemical equilibrium analysis. The TEST chemical
thermodynamic module [32–34] is comprised of a set of
combustion and equilibrium analysis daemons for solving
both open steady systems problems and unsteady process
problems. The combustion daemons can be used for the
analysis of premixed or nonpremixed reactants modeled
using a perfect gas (PG), ideal gas (IG), or a solid/liquid (SL)
model. In the TEST framework, the PG model stipulates
that a working fluid obeys the ideal gas equation pv =
RT with heat capacity held constant. In the IG model the
working fluid still obeys the ideal gas equation but the heat
capacity of the working fluid is a function of temperature.
A working fluid modeled using the SL model in TEST
has a constant density and constant heat capacity with
heat capacity at constant pressure equal to heat capacity at

constant volume (i.e., cp = cv = constant). TEST provides
separate daemons for thermodynamic state evaluation using
the IG model when the working fluid is a single species, a
binary mixture of two species, or a general mixture of more
than two species. To illustrate the IG model and contrast
it with the proposed IGE model, the trivial problem of
computing the specific enthalpy of oxygen gas over a large
temperature range is used as a benchmark. The IG state
daemon is accessible by navigating to Daemons −→ States
−→ System −→ IG-Model. Figure 1 shows a screen capture
of the daemon. The majority of TEST’s daemons follow the
look and feel of the interface shown in Figure 1. Each daemon
is a graphical Web-based specialized calculator designed for
solving a specific class of thermodynamic problem. The ideal
gas daemon provides several text entry fields in which a
user enters what is known about a particular problem, and
a calculate button for computing what is unknown. For
example, when evaluating the state of a pure gas, specifying
any two thermodynamic properties is sufficient to determine
all other properties. Thus a user could enter values for the
specific volume and temperature of a selected gas, at which
time the daemon would use the ideal gas law to calculate
all other properties such as pressure, specific internal energy,
specific enthalpy, and specific entropy. The green text entry
boxes show input values entered by the user while the cyan
boxes show the computed output values. In Figure 1 the user
has entered p1 = 1 atm and T1 = 3000 K. The notation p1
and T1 refer to the pressure and temperature, respectively,
of the first thermodynamic state specified in the daemon.
The @State pull-down menu in the upper-left corner of
the daemon allows a user to configure multiple states in
which different inputs are specified and then compute all
the properties of all the states at once using the blue Super
Calculate button. The blue line in Figure 2 shows a plot
of the specific enthalpy of oxygen gas at a pressure of 1
atmosphere over the temperature range (298.15 K, 6000 K).
The enthalpy values are obtained by configuring the daemon
at thirteen different states with different temperatures, T1
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Figure 2: The specific enthalpy of oxygen gas at one atmosphere
over the temperature range (298.15 K, 6000 K). The IGE model
computes a more accurate thermodynamic state since the true
mixture composition is determined before state computation.

through T13, and then using the Super Calculate button
to compute thirteen different specific enthalpy values, as
indicated by the circle symbols in the plot. The specific
enthalpy of oxygen gas for temperatures approximately less
than 3000 K Kelvin is accurately shown in the plot. In
reality, however, the diatomic oxygen molecule will begin
to dissociate at higher temperatures and form monatomic
O atoms. The degree of dissociation is temperature and
pressure dependent. At temperatures greater than 3000 K, a
mixture of O2 molecules, and O atoms will form and this
mixture will have different thermodynamic properties than a
pure amount of O2 molecules. As one can see in Figure 2, the
specific enthalpy of the true dissociated mixture of oxygen
gas, represented by the red line, rises sharply after 3000 K
and is remarkably greater than the specific enthalpy of the
pure substance at higher temperatures. The specific enthalpy
values shown on the red line were computed using the TEST
ideal gas equilibrium of IGE model. The IGE model is the
same as the IG model with the exception that the equilibrium
composition of the working fluid is computed first and then
the thermodynamic state is evaluated based on the computed
mixture. Any application in which the IG model can be used,
the IGE model can also be used to obtain a more accurate
thermodynamic representation of the system.

The degree of dissociation is shown in Figure 3 where the
mole fractions of O2 molecules and O atoms are plotted with
respect to temperature. From this figure one can see that at
6000 K a sample of O2 molecules will completely dissociate
into O atoms. We can use the data computed by the IGE
model to examine the endothermicity of the dissociation
process. As the temperature of a mixture of O2 molecules and
O atoms increases, absorption of heat occurs. The absorbed
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Figure 3: The mole fractions of O2 molecules and O atoms in
a one mole initial sample of oxygen gas at standard pressure. As
temperature increases, O2 molecules dissociate into O atoms. At
6000 K, a one mole initial sample of oxygen gas will contain 2 moles
of O atoms.

energy will be distributed into translational (kinetic) energy,
internal vibrational and rotational energy, as well as elec-
tronic and nuclear energy. If enough vibrational energy is
present in an O2molecule to overcome the double covalent
bond holding its two oxygen atoms together, atomization will
occur and the O2 molecule will dissociate into two O atoms.
The bond dissociation energy D◦ for an O=O bond which is
broken through the reaction O2 −→ O + O is defined as the
standard state enthalpy change for the reaction at a specified
temperature,

D◦ = 2ΔH◦
f (O)− ΔH◦

f (O2). (10)

The fraction of O atoms present is dependent on temperature
and pressure. At a standard pressure of 1 atmosphere,
Figure 3 shows a plot of the mole fraction of O2 and O for a
1 mole initial mixture of O2 in thermodynamic equilibrium
at a given temperature. The equilibrium reaction for this
process is given in (11) which indicates at equilibrium, for a
particular temperature, the forward and backward reactions
occur at the same rate. In other words, the rate at which O2

bonds are broken to form oxygen atoms is matched by the
rate at which two oxygen atoms recombine to form an oxygen
molecule.

O2 � 2O. (11)

The amount of O2 molecules and O atoms present in
equilibrium at a particular temperature is defined by the
partial pressure equilibrium constant Kp for reaction (11). If
we let α represent the fraction of each mole of O2 molecules
that dissociate into 2α moles of O atoms, leaving 1-α moles
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Figure 4: Log of the partial pressure equilibrium constant Kp versus
the reciprocal of temperature for reaction (11).

of O2, we can express Kp for reaction (11) in terms of the
partial pressures of the reactant O2 and the product O,

Kp = p2
O

pO2

= y2
O(P◦)2

yO2P◦
= [2α/((1− α) + (2α))]2

(1− α)/((1− α) + (2α))
P◦

= 4α2

1− α2
P◦.

(12)

Figure 4 shows a plot of the log of Kp versus the reciprocal
of temperature obtained from the IGE daemon. One can see
a linear relationship with a negative slope is present at high
temperatures greater than about 1500 K. For temperatures
less than 1500 K, log Kp is constant and independent of
temperature. The negative slope indicates reaction (11) is
endothermic. As the temperature increases, Kp increases.
By Le Chatelier’s Principle the equilibrium will shift to the
right in (11) to counteract the stress of additional heat.
A right shift will produce an increase in O atoms and a
corresponding decrease in O2 molecules. As the number of
O atoms increases, the partial pressure of O atoms increases
and this increases the equilibrium constant Kp.

Using the van’t Hoff equation,
[
∂ lnKp

∂(1/T)

]
p

= −ΔH◦

R
, (13)

and the slope of the log Kp v. 1/T plot, we can solve for ΔH◦,
the standard state molar enthalpy of reaction, and investigate
how ΔH◦ varies with temperature. Figure 5 shows a plot
of ΔH◦ versus temperature. The minima of this function
corresponds to the point of intersection in Figure 3 where an
equal portion of O2 molecules and O atoms are present.

3. Numerical Method

The theory underlying the computation of the distribution
of a mixture of ideal gases in equilibrium at a constant
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Figure 5: Standard state molar enthalpy of reaction ΔH◦ versus
temperature for reaction (11). ΔH◦ > 0 which implies the reaction
is endothermic.

temperature and pressure is based on the minimization of
the Gibbs free energy function. The interested reader can
find a detailed description of the numerical method used by
the TEST IGE model to minimize a system’s Gibbs function
in Paolini and Bhattacharjee [35], Gordon and McBride
[11, 36, 37], and the classic paper by Gordon et al. [38].

To summarize, the Gibbs function G is defined as

G = H − TS = (U + PV)− TS =
m∑
j=1

μjnj . (14)

A system will be in equilibrium when the change in Gibbs
free energy of the system vanishes to zero.

Differentiating (14) we obtain

dG = dU + PdV + VdP − TdS− SdT. (15)

At a constant temperature T and pressure P, (15) reduces to

dG = dU + PdV − TdS. (16)

The combined first and second laws of thermodynamics
requires

dU − TdS + PdV ≤ 0 =⇒ dG ≤ 0, (17)

which tells us the equilibrium state is also one where the
Gibbs free energy of a system has reached the smallest
possible or minimum value. From (14) and using the
definition of the chemical potential for an ideal gas species
j,

μj = μ◦j + RT ln

(
Pj

P◦

)
. (18)

Substituting (18) into (14) and dividing by RT to obtain a
dimensionless form, we obtain

G

RT
=

m∑
j=1

[
nj

μ◦j
RT

+ nj ln

(
Pj

P◦

)]
, (19)
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but

ln

(
Pj

P◦

)
= ln

(
Pj

P

P

P◦

)
= ln

(
yjP

P

P

P◦

)
= ln yj + ln

(
P

P◦

)
,

(20)

where the last term, ln(P/P◦), reduces to a constant since the
system total pressure P is given as an input to the problem.
Using (20), (19) now becomes

G

RT
=

m∑
j=1

[
nj

μ◦j
RT

+ nj ln yj + nj ln
(
P

P◦

)]
. (21)

The minimum stationary point of (14) will be the vector of
species molar values �n where dG vanishes. Differentiating G
in (14) we obtain

dG =
m∑
j=1

njdμj +
m∑
j=1

μjdnj , (22)

but from the isothermal, isobaric Gibbs-Duhem equation we
know that

m∑
j=1

njdμj = 0, (23)

and so we seek the unique vector �n such that

m∑
j=1

[
μ◦j
RT

+ lnnj − lnn + ln
(
P

P◦

)]
dnj = 0. (24)

Solving (24) amounts to solving a nonlinear constrained
minimization problem. The method of Lagrange multipliers
is used to solve (24) according to an atomic mass constraint

m∑
j=1

Ai, jn j = bi, i = 1, . . . , a. (25)

The total number of each atom present in the reactant
mixture must be the same in the product mixture at
equilibrium since mass is conserved. Because there cannot
exist a negative number of moles of a species, we are also
bound by the positive moles constraint

nj ≥ 0, ∀ j, 1 ≤ j ≤ m. (26)

We can express the atomic constraint equations given by (25)
and (26) as equality constraints

φi = φi(n1,n2, . . . ,nm) =
m∑
j=1

Ai, jn j − bi = 0. (27)

There will be a equations of the form (27) for each atom
i present in the system. We define the Lagrangian function

L = L(�n,�λ) as

L
(
�n,�λ

)
= μ

(
�n
)

+
a∑
i=1

λiφi. (28)

The solution of (24) is thus the minimum stationary point
where the gradient of (28) vanishes, that is,

∇L
(
�n,�λ

)
=

m∑
j=1

(
∂μ

∂nj

)

p,T ,ni /= j

dnj +
a∑
i=1

λi

m∑
j=1

∂φi
∂nj

dnj = �0.

(29)

The TEST IGE model uses a Newton-Raphson technique to
solve (29). By expanding (29) we can write

∇L
(
�n,�λ

)

=
m∑
j=1

(
∂μ

∂nj

)

p,T ,ni /= j

dnj +
a∑
i=1

λi

m∑
j=1

∂φi
∂nj

dnj

=
m∑
j=1

μjdnj +
a∑
i=1

λi

[
∂φi
∂n1

dn1 +
∂φi
∂n2

dn2 +· · ·+ ∂φi
∂nm

dnm

]

=
m∑
j=1

μjdnj + λ1

[
∂φ1

∂n1
dn1 +

∂φ1

∂n2
dn2 + · · · +

∂φ1

∂nm
dnm

]

+ λ2

[
∂φ2

∂n1
dn1 +

∂φ2

∂n2
dn2 + · · · +

∂φ2

∂nm
dnm

]

+ · · · + λa

[
∂φa
∂n1

dn1 +
∂φa
∂n2

dn2 + · · · +
∂φa
∂nm

dnm

]

=
[
μ1 + λ1

∂φ1

∂n1
+ λ2

∂φ2

∂n1
+ · · · + λa

∂φa
∂n1

]
dn1

+

[
μ2 + λ1

∂φ1

∂n2
+ λ2

∂φ2

∂n2
+ · · · + λa

∂φa
∂n2

]
dn2

+ · · · +

[
μm + λ1

∂φ1

∂nm
+ λ2

∂φ2

∂nm
+ · · · + λa

∂φa
∂nm

]
dnm

= �0.
(30)

In order to satisfy (30), all the terms in the square brackets
must vanish to 0. We therefore seek values of Lagrange

multipliers �λi such that

μj +
a∑
i=1

λi
∂φi
∂nj

= 0, (31)

for all j. By observing

λi
∂φi
∂nj

= λiAi, j , (32)

solving (30) amounts to solving a system of m equations for
each species j where the jth species equation is given by

μj +
a∑
i=1

λiAi, j = 0, (33)

and additionally, a population constraint equations for each
element i where the ith constraint equation is given by

m∑
j=1

Ai, jn j − bi = 0, (34)
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and finally one constraint equation governing the total
number of moles present in the system,

m∑
j=1

nj − n = 0. (35)

From (33), (34), and (35), we must solve a system of m +
a+ 1 equations in a+m+ 1 unknowns. The IGE model uses
the Newton-Raphson method to iteratively solve this system
of equations. To construct our system matrix we let f j =
f j(�x) = fi(x1, x2, . . . , xn) represent the jth species equation
of (33), or

f j = μj +
a∑
i=1

λiAi, j = 0. (36)

Expanding μj using (21) we have

f j =
μ◦j
RT

+ ln nj − ln n + ln
(
P

P◦

)
+

a∑
i=1

λi
RT

Ai, j = 0. (37)

By letting

x1 = ln nj , x2 = ln n, x3 = − λ1

RT
,

x4 = − λ2

RT
, . . . , xa+2 = − λa

RT
,

(38)

we will obtain

∂ f j
∂x1

= ∂ f j

∂
(

ln nj

) = 1,
∂ f j
∂x2

= ∂ f j
∂(ln n)

= −1,

∂ f j
∂x3

= ∂ f j
∂(−λ1/RT)

= −A1, j , . . . ,

(39)

and our Newton-Raphson equation becomes

n∑
i=1

∂ f

∂xi
δxi = − f

(
�x
) =⇒ δ ln nj − δ ln n +

a∑
i=1

Ai, j
λi
RT

= − μj

RT
−

a∑
i=1

λi
RT

Ai, j .

(40)

We will have m equations of type (40) for each species j.
For the population constraint equations given by (34), we

let fi = fi(�x) = fi(x1, x2, . . . , xn) represent the ith population
constraint equation such that

fi =
m∑
j=1

Ai, jn j − bi =
m∑
j=1

Ai, j exp
(

ln nj

)
− bi = 0. (41)

Then

∂ fi
∂xj

= ∂ fi

∂
(

lnnj

) = Ai, jn j , (42)

and our Newton equation for (34) becomes

m∑
j=1

Ai, jn jδ lnnj = bi −
m∑
j=1

Ai, jn j . (43)

We will have a of these equations for each unique atom
present in the system. Finally, we accommodate the total
system moles equation in a similar fashion by letting f =
f (�x) = f (x1, x2, . . . , xn) represent (35),

f =
m∑
j=1

exp
(

lnnj

)
− exp(lnn) = 0, (44)

where

∂ f

∂xj
= ∂ f

∂
(

lnnj

) = nj ,
∂ f

∂(lnn)
= −n, (45)

and thus the Newton equation for the total system moles
constraint becomes

n∑
i=1

∂ f

∂xi
δxi = − f

(
�x
) =⇒

m∑
j=1

njδ lnnj − nδ lnn

= exp(lnn)−
m∑
j=1

exp
(

lnnj

)
= n−

m∑
j=1

nj .

(46)

We can represent our system of Newton equations in matrix
form by combining (40), (43), and (46) to obtain
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −A1,1 −A2,1 · · · −Aa,1 −1
0 1 · · · 0 −A1,2 −A2,2 · · · −Aa,2 −1
...

...
0 0 · · · 1 −A1,m −A2,m · · · −Aa,m −1

A1,1n1 A1,2n2 · · · A1,mnm 0 0 · · · 0 0
A2,1n1 A2,2n2 · · · A2,mnm 0 0 · · · 0 0

...
...

Aa,1n1 Aa,2n2 · · · Aa,mnm 0 0 · · · 0 0
n1 n2 · · · nm 0 0 · · · 0 −n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ lnn1

δ lnn2
...

δ lnnm

− λ1

RT

− λ2

RT
...

− λa

RT
δ lnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ 1

RT
−

a∑
i=1

λiAi,1

RT

−μ 2

RT
−

a∑
i=1

λiAi,2

RT
...

−μm

RT
−

a∑
i=1

λiAi,m

RT

b1 −
m∑
j=1

A1, jn j

b2 −
m∑
j=1

A2, jn j

...

ba −
m∑
j=1

Aa, jn j

n−
m∑
j=1

nj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Many common problems in combustion, gas turbine analy-
sis, and gas dynamics require the chemical composition of
a set of reacting species to be determined not at constant
temperature, but at constant enthalpy or entropy. For
example, the combustion process of a Diesel cycle can be
modeled as a constant pressure adiabatic process where the
piston moves to maintain a constant pressure. In combustor
design one often is interested in determining the adiabatic
flame temperature at constant pressure which amounts to
the temperature the products of combustion will attain if no
energy is lost to the surroundings. In the simplified analysis
of flow through a convergent-divergent nozzle, the gas flow
is assumed to be isentropic. The IGE model can be employed
to solve these types of problems by constraining enthalpy
or entropy, respectively, instead of temperature. To solve
an adiabatic problem, the IGE model enforces a constant
enthalpy constraint such that a distribution is found that
minimizes a Gibbs function such that the enthalpy of the
product distribution is equal to the enthalpy of the initial
reacting mixture.

The TEST IGE model can solve a constant pressure,
constant enthalpy (“hp”) or constant pressure, constant
entropy (“sp”) equilibrium problem in two different ways.
The first is a direct method in which an additional constraint
equation is incorporated into the iteration matrix given in
(47). The second is an iterative approach that repeatedly
solves a constant pressure, constant temperature (“tp”)
problem until the specific enthalpy of the product mixture
equals the specific enthalpy of the reactants. The direct hp
constraint equation is derived as follows. Let h represent
the dynamically changing specific enthalpy of the product
mixture and h◦ represent the specific enthalpy of the
reactants, a constant. Upon convergence of (47) we desire

h = h◦. (48)

The specific enthalpy of the product mixture h is determined
after each iteration of (47) through the summation

h =
m∑
j=1

njh
◦
j , (49)

where h◦j is the standard state specific molar enthalpy of
species j. As the number of moles of each species nj varies,
the current value of the product mixture enthalpy varies as

m∑
j=1

nj

h◦j
RT

Δ lnnj . (50)

For an hp problem, temperature T varies and approaches the
adiabatic flame temperature as (47) converges. As T varies,
the product mixture enthalpy also varies as

⎡
⎣ m∑

j=1

nj

c◦p, j

R

⎤
⎦Δ lnT , (51)

where c◦p, j is the standard state specific molar heat capacity
of species j. Equation (51) is clear since Δh = cpΔT for an
ideal gas. The standard state specific molar enthalpy and heat
capacity in (50) and (51) are cast into dimensionless form by
dividing by RT and R, respectively. Our additional constraint
equation is thus

m∑
j=1

nj

h◦j
RT

Δ lnnj

︸ ︷︷ ︸
Enthalpy change through
a change in species moles

+

⎡
⎣ m∑

j=1

nj

c◦p, j

R

⎤
⎦Δ lnT

︸ ︷︷ ︸
Enthalpy change through
a change in temperature

+
h

RT︸ ︷︷ ︸
Enthalpy

of the
product

mixture at
the current

iteration

= h◦
RT︸ ︷︷ ︸

Enthalpy
of the

reactants,
a constant

(52)
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Set α = 0.4
Specify the specific enthalpy h◦ and pressure p of the reactants
Compute the temperature as a function of h◦ and p, T = f (h◦, p)
Compute the equilibrium distribution of the product mixture

according to T and p
Repeat

Set T ′ = T
Compute the thermodynamic state of this product mixture
based on h◦ and p giving a new temperature T
Set T = α T + (1− α)T ′

Compute the equilibrium distribution of the product
mixture according to T and p

Until |T ′ − T| < τ

Algorithm 1

or

m∑
j=1

nj

h◦j
RT

Δ lnnj +

⎡
⎣ m∑

j=1

nj

c◦p, j

R

⎤
⎦Δ lnT = h◦ − h

RT
. (53)

Equation (53) is inserted into (47) and repeatedly solved
yielding correction terms Δ lnnj and Δ lnT . The final
temperature T will be the adiabatic flame temperature and
the final product mixture will have a specific enthalpy equal
to that of the reactants. The procedure is similar for sp
problems. In this case we require the entropy of the product
mixture to equal the entropy of the reactants, or

s = s◦, (54)

where s represents the dynamically changing specific entropy
of the product mixture and s◦ represents the specific entropy
of the reactants, a constant. The specific entropy of the
product mixture s is determined after each iteration of (47)
through the summation

s =
m∑
j=1

njs j , (55)

where s j is the specific molar enthalpy of species j given by

s j = s◦j − R ln
nj

n
− R lnP, (56)

and s◦j is the standard state specific molar entropy of species
j given by

s◦ =
∫ T

0

cp(T)

T
dT. (57)

As the number of moles of each species nj varies, the current
value of the product mixture entropy varies as

m∑
j=1

nj
s j
R
Δ lnnj . (58)

For an sp problem, temperature T varies and approaches an
isentropic temperature as (47) converges. As T varies, the
product mixture entropy also varies as
⎡
⎣ m∑

j=1

nj

c◦p, j

R

⎤
⎦Δ lnT =

m∑
j=1

njΔ lnPj

=
m∑
j=1

njΔ ln
nj

n
+

m∑
j=1

njΔ ln
P

P◦
︸ ︷︷ ︸

=0

=
m∑
j=1

njΔ lnnj −
⎛
⎝ m∑

j=1

nj

⎞
⎠Δ lnn

= n−
m∑
j=1

nj .

(59)

The last equality in (59) is from (46). Our additional
constraint equation for an isentropic, isobaric process is thus

m∑
j=1

nj
s j
R
Δ lnnj +

⎡
⎣ m∑

j=1

nj

c◦p, j

R

⎤
⎦Δ lnT = s◦ − s

R
+ n−

m∑
j=1

nj .

(60)

The second method used by the TEST IGE model to solve a
hp or sp problem is an iterative method in which repeated
constant pressure, constant temperature (i.e., tp) compu-
tations are made until a converged value of temperature
is obtained. Pseudocode to compute an adiabatic flame
temperature using this iterative method is as in Algorithm 1.
where τ is a convergence error tolerance. NASA CEA [11, 36]
uses the direct approach while STANJAN [39] performs
repeated tp iterations.

4. Model Comparison

To illustrate how the TEST IGE model can extend the
capabilities of the IG model we examine how the two models
can be used to compute adiabatic flame temperature. For
combustion applications using the IG model, TEST includes
different suites of daemons for open and closed processes. In
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Figure 6: The TEST Specific, Closed Process, Premixed, Reaction daemon using the IG Mixture Model. The figure shows the state of a
reactant mixture of a stoichiometric amount of methane and oxygen gas at standard conditions (1 bar, 298 K).

Figure 7: The state of the product mixture of water vapor and carbon dioxide gas. The computed adiabatic flame temperature is shown in
the cyan box labeled T2.

each suite, IG model daemons exist for problems in which
the reacting fuel and oxidizer components are premixed, or
problems in which a fuel and oxidizer enter a combustion
chamber separately. In both instances, the IG model assumes
the product composition is frozen. That is, one must
completely define the distribution of products of combustion
prior to computation and the adiabatic flame temperature
computed is based on this prespecified distribution. Figure 6
shows a screenshot of the TEST Specific, Closed Process,
Premixed, Reaction daemon using the IG Mixture Model.
This combustion daemon is designed to compute the state
of premixed fuel and oxidizer reactants using the ideal gas
law. To use this daemon, one first defines a combustion
reaction by specifying reactant and product species as well
as the reaction stoichiometry. One can balance, scale, and
normalize a reaction using the commands shown in a drop-
down menu. After defining a combustion reaction, one
navigates to the State Panel where a sufficient number of
known thermodynamic properties needed to compute the

thermodynamic states of the reactants and products are
specified.

After state computation, one can then perform a process
analysis by either specifying or computing heat transfer,
boundary work, boundary temperature, entropy generation,
or the change in internal energy or entropy resulting from
a closed process from one state to another where a change
in energy occurs through heat transfer, work transfer, or
both. For example, Figure 6 shows the state of a reactant
mixture of a stoichiometric amount of methane and oxygen
gas at standard conditions of 1 bar and 298 K. Figure 7 shows
the corresponding state of the product mixture of water
vapor and carbon dioxide gas. The computed adiabatic flame
temperature is shown in the cyan box labeled T2.

The IG and IGE models in TEST can be used to
perform fairly advanced parametric studies. To illustrate this
capability, let us extend the previous example a little further
to investigate the effect of oxygen level on the adiabatic
flame temperature of methane combustion in air using both
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the TEST IGE daemon and the Combustion Chamber Simu-
lator RIA [30]. The complete reaction for the IG model is

CH4 + 2(O2 + 3.76 N2) −→ CO2 + 2H2O + 7.52 N2. (61)

The IGE daemon can be launched by navigating to the
TEST Map page and selecting the Closed, Unsteady, Spe-
cific, Combustion and Equilibrium Daemon page and then
selecting the Chemical Equilibrium (IGE) Model daemon.
In the IGE daemon, one defines an initial reactant mixture
composition (by mass, volume, or moles) and the allowable
product species (but not the product species stoichiometry
like is needed in the premixed combustion daemon). For
a given pressure and either temperature or enthalpy, the
IGE daemon calculates the equilibrium composition and the
complete products state, including the equilibrium flame
temperature if enthalpy is specified, by minimizing the
mixture’s Gibbs function. For example, to define reaction
(61) in the IGE daemon, configure the reactant mixture as
State 1 by choosing one kmole of CH4, two kmoles of O2, and
7.52 kmoles of N2 in the Composition Panel. Then navigate
to the State Panel and set p1 = 100 kPa and T1 = 298.15 K.
Click the Calculate button to find the specific enthalpy of the
reactants as shown in Figure 8.

Once the specific enthalpy of the reactants is known, the
IG model can be used to find the adiabatic flame temperature
by defining State 2 to be the products mixture assuming
complete combustion. In the Composition Panel, select only
the products given in reaction (61) and then return to the
State Panel and click the greater than symbol to the right of
the state pull down menu to define State 2. Then set p1 =
p2 and h2 = h1 to constrain pressure and specific enthalpy
between the two states. Click the Calculate button again and
the computed temperature displayed in the T2 cyan box will
be the adiabatic flame temperature computed using the IG
model as shown in Figure 9.

Finally, to use the IGE model in the IGE daemon, return
to the Composition Panel, and pull down the menu labeled
Choose Preconfigured Products and select the option Select
Common Combustion Species. Then return to the State Panel
and click the Calculate button once more. The computed
temperature displayed in the T2 cyan box will be the
adiabatic flame temperature computed using the IGE model
as shown in Figure 10. Notice the IGE model computes a
lower adiabatic flame temperature of 2223 K compared with
2326 K as found by the IG model.

All of the screen images of daemons shown in Figures 1
and 6 through Figure 10 are implemented as Java applets. To
run any of these daemons, a user must have the Java runtime
environment installed on their client PC (available free via
URL http://www.java.com/).

Equilibrium distribution for an adiabatic combustion
chamber is calculated using the IGE daemon for a reactant
mixture of one mole of methane and 2 moles of air.
For a stoichiometric amount of oxygen, the IG model
computes an adiabatic flame temperature of 2326 K while
the IGE model computes the lower value of 2223 K. The
IGE result corresponds exactly with published data on flame
temperatures [40]. A lower flame temperature found by the

IGE model in the higher O2 mole fraction range is expected
since species dissociation will lower flame temperature, as
predicted by Le Chatelier’s principle discussed earlier.

The results of a parametric study comparing adiabatic
flame temperature versus oxygen reactant mole fraction
using the IG and IGE models is shown in Figure 11. The
plot clearly shows how dissociation remarkably affects flame
temperature.

One of the useful features of TEST’s IGE model daemons
is the ability to compute the partial pressure equilibrium
constant Kp of a reaction at different temperatures. IGE
model-based daemons will report ln Kp in the upper right
corner of the daemon’s Composition Panel as shown in
Figure 12. The IGE model computes the change in the
standard Gibbs energy between the reaction products and
reactants, ΔG◦. From this value, ln Kp is easily found at a
particular temperature T by

lnKp(T) = −ΔrxnG◦

RT
. (62)

Figure 13 shows a plot comparing ln Kp versus the reciprocal
of temperature for the equilibrium reaction

CO2 � CO +
1
2

O2. (63)

The IG and IGE models can also be used to investigate the
difference in adiabatic flame temperature versus equivalence
ratio ϕ which is the ratio of the fuel-to-oxidizer ratio to the
stoichiometric fuel-to-oxidizer ratio,

φ = mfuel/moxidizer

(mfuel/moxidizer)stoichiometric
, (64)

where m can be mass or number of moles. A value of
ϕ = 1 is at stoichiometry while rich mixtures are greater
than 1 and lean mixtures are less than 1. Figure 14 shows
a comparison of the IG and IGE models for the constant
pressure combustion of propane gas at different equivalence
ratios. For the IG model, the complete reaction is

C3H8 + 5(O2 + 3.76 N2) −→ 3CO2 + 4H2O + 18.80 N2.
(65)

For the IGE model we allowed CO, H2, and OH to form
as products which are the predominant product species
of combustion other than H2O and CO2. The IGE model
is shown to compute a lower flame temperature for rich
mixtures.

To assess the performance difference between the iter-
ative and direct methods employed by the IGE model we
computed the adiabatic flame temperature of methane and
oxygen gas at a standard pressure of 1 bar. The overall
reaction is

CH4 + 2O2 −→ products, (66)

where products varies according the list of species shown in
each row of Table 2. As one can see in Table 1, both methods
compute the same flame temperature to an accuracy of 1 K.
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Figure 8: To compute the adiabatic flame temperature of reaction (61) using TEST’s IGE daemon, first define State 1 as the reactant mixture
using the Composition Panel and then click the Calculate button in the State Panel to compute the reactant’s specific enthalpy h1.

Figure 9: The IG model can be used within the TEST IGE daemon by choosing only those products specified in the complete reaction (61).
The IG model adiabatic flame temperature is computed and displayed in the T2 cyan box.

Table 1: Performance comparison of the IGE model iterative and direct methods on the adiabatic flame temperature of methane and oxygen
at 1 bar.

Number of
Product Species

Iterative Method
Wall Time (s)

Direct Method
Wall Time (s)

Number of tp
Iterations

Iterative Method Flame
Temperature (K)

Direct Method Flame
Temperature (K)

Difference

2 281.80 3.19 30 5166 5166 0

3 322.42 15.19 30 5166 5166 0

4 216.17 3.33 21 3842 3842 0

5 92.78 3.70 8 3376 3376 0

6 455.58 4.47 41 3262 3262 0

7 2429.08† 5.05 297 3122 3122 0

8 ∗ 5.67 ∗ ∗ 3049 ∗

9 ∗ 7.91 ∗ ∗ 3049 ∗
†

Run on an Intel 2x Quad Core system (2 Xeon E5530 @ 2.40 GHz CPUs). The other tests were run on an Intel 2x single core system (2 Xeon Nocona @
2.80 GHz CPUs).
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Figure 10: The IGE model can be used within the TEST IGE daemon by selecting common combustion species using the preconfigured
products pull-down menu in the Composition Panel. The IGE model computes a lower adiabatic flame temperature than the IG model.
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Figure 11: Adiabatic flame temperature versus oxygen reactant
mole fraction. A comparison of IG and IGE model results.

However, the time taken to compute the flame temperature
directly is drastically lower than using an iterative approach.

Using the IGE model to perform a sp type computation
can be seen in investigating the effect to which chemical
equilibrium plays a role in air compressor efficiency. To
illustrate, suppose an air compressor compresses incoming
air, assumed to be a mixture of 21% O2 and 79% N2 by
volume, from the standard state of 298 K and 1 bar, to an
exit state of 800 kPa and variable temperature T2. For values
of T2 > Ts, where Ts is the exit temperature reached if the
inlet air was compressed reversibly and adiabatically (i.e.,
isentropically), we can compute the compressor isentropic
efficiency, ηC , using the IG and IGE model within the

Table 2: Set of possible product species for each adiabatic flame
temperature calculation shown in Table 1.

Number of
Product Species

Species Set

2 CO2, H2O

3 CO2, H2O, CO

4 CO2, H2O, CO, O2

5 CO2, H2O, CO, O2, OH

6 CO2, H2O, CO, O2, OH, O

7 CO2, H2O, CO, O2, OH, O, H2

8 CO2, H2O, CO, O2, OH, O, H2, H

9 CO2, H2O, CO, O2, OH, O, H2, H, O3

TEST Open System, Steady-State, Single Flow Equilibrium
daemon.

The compressor isentropic efficiency is defined as

ηC = Isentropic compressor work
Actual compressor work

= ws

wa
= Δhs

Δha

= h2s − h1

h2a − h1
,

(67)

where h2s is the specific enthalpy of the exit state for an
isentropic compression and h2a is the specific enthalpy of the
exit state for an actual compression. The term Δhs can be
computed using the daemon by assigning the inlet and outlet
pressures accordingly and setting the specific entropy of both
states to be equal. The daemon uses the iterative scheme
to compute the exit temperature based on an isentropic
compression process. For this particular example problem
the isentropic, or ideal, exit temperature to compress air
in a standard state to 800 kPa is 535 K. To obtain the Δha
for a particular exit temperature using the IG model we
simply use the daemon to find the exit state specific enthalpy
of a reactant mixture of 1 kmole of O2and 3.76 kmols of
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Figure 12: TEST IGE model daemons will compute and report the log of the partial pressure equilibrium constant Kp of a reaction in the
upper right corner of the Composition Panel.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

Test IGE model

−10

−20

−30

−40

−50

−60

ln
K
p

· 103 /T : CO2 ⇋ln Kpv CO + 1/2 O 2

10 3 /T (1/K)
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Figure 13: Log of the partial pressure equilibrium constant Kp at
specific temperatures for reaction (63). IGE model values agree with
published tabulated data [25] to within an error norm of 0.03.

N2. For the IGE model we use the daemon to find the
exit state specific enthalpy of air products which consists
of some distribution of N, N2, N2O, N2O4, NO, NO2, O,
O2, and O3 in equilibrium. These nine species represent the
feasible species that might form as air is compressed to a high
pressure and temperature. Figure 15 shows a plot of ηC versus
compressor exit temperature. From the plot one can see that
chemical equilibrium does not have an appreciable effect on
compressor efficiency, except at very high exit temperatures
where the discrepancy is only slight. At low temperatures air
will not dissociate and so the IG model matches the IGE
model. At very high temperatures >3000 K air will begin to
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Figure 14: Adiabatic flame temperature versus equivalence ratio ϕ
for the combustion of propane gas in air at constant pressure.

dissociate and form oxides of nitrogen as well as monatomic
oxygen and nitrogen gas. At 6000 K air is 31% monatomic
oxygen, 6% monatomic nitrogen, and 2% nitric oxide, with
the remainder being mostly diatomic nitrogen gas.

As a final interesting example of how the TEST IGE
model can provide a more accurate representation of equi-
librium effects, Figure 16 shows a plot of the molar mass
of the products of hydrogen combustion with oxygen versus
the ratio of oxygen to hydrogen fuel in a rocket combustion
chamber. The TEST IG model solves the complete reaction

H2 +
1
2

O2 −→ H2O, (68)

while the IGE model solves the equilibrium reaction with
nine product species,

H2 +
1
2

O2 � {H, H2, H2O, H2O2, HO2, O, O2, O3, OH}.
(69)
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Figure 15: Investigating the effect to which chemical equilibrium
plays a role in air compressor efficiency. The IG model shows a slight
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Figure 16: Product mixture molar mass versus the ratio of oxygen
to hydrogen fuel in a rocket combustion chamber. The TEST IG
model solves the complete reaction (68) while the IGE model solves
the equilibrium reaction (69).

From the plot one can see how dissociation, association,
and recombination lower the exhaust molecular weight at
higher oxygen to hydrogen ratios. Because a rocket must
internally carry its oxidizer and fuel, minimizing the total
mass of oxidizer and fuel increases forward acceleration. The
molecular weight of oxygen is sixteen-times greater than
that of hydrogen and so overall rocket motor performance
is improved at lower oxidizer/fuel ratios. For a fixed mass
of oxidizer and fuel, the change in forward momentum can
only be increased by an equal and opposite change in exhaust

momentum. The IGE model clearly shows, however, that
equilibrium plays a role in reducing exhaust momentum at
higher oxidizer/fuel ratios since the molecular weight of the
exhaust is less than in an ideal case of complete combustion.

5. Conclusion

TEST is a collection of thermodynamic databases, software,
and courseware, accessible on the Internet from http://www
.thermofluids.net/. TEST is freely accessible from any aca-
demic institution and is currently used in more than
100 institutions around the world. The thermodynamic
calculators in TEST, called daemons, have been developed
using an object-oriented paradigm in Java so that code can
be reused. All TEST daemons have been thoroughly tested
under different versions of browsers such as IE, Firefox,
Chrome, and Safari running on Windows, MacOS, and
Linux platforms. The only browser plug-in required to run
TEST daemons is version 4 (or greater) of the Java Platform.

Gas mixtures are modeled in TEST by the perfect gas or
ideal gas mixture models. In this work we extended the ideal
gas (IG model) mixture model into an ideal gas equilibrium
(IGE model) mixture model by incorporating chemical
equilibrium calculations as part of the state evaluation. Using
TEST’s intuitive graphical interface, users can define a reac-
tion by specifying the composition of a reacting mixture and
the possible species that may form as products, and compute
a thermodynamic state that is based on an equilibrium
distribution. For a given pressure and either temperature,
enthalpy, or entropy, a product mixture’s Gibbs function
is minimized subject to atomic mass and possibly either
energetic or entropic constraints. The resulting equilibrium
composition along with thermodynamic properties of the
mixture are calculated and displayed.

Whereas the IG model computes state variables based
on a frozen mixture, the IGE model yields a more accu-
rate determination of mixture properties such as specific
enthalpy, specific entropy, and temperature. Thus the IGE
model is well suited for computing the equilibrium constant
of a reaction or final temperatures resulting from adiabatic
or isentropic processes. The differences between the IG
and IGE models become apparent at high temperatures
where species dissociation occurs according to Le Chatelier’s
Principle. The implementation of the IGE model in TEST
uses two approaches when solving hp and sp problems: a
direct method and an iterative method. Both methods are
accurate in that they compute equivalent states. The iterative
method is simpler to comprehend but is not practical
to use when computing the equilibrium distribution for
mixtures containing many species as the number of required
tp iterations increases greatly and consequently the overall
time to achieve convergence becomes unacceptable. The
approach taken by TEST is unique in that equilibrium
computations are performed in the background, without
requiring any major change in the familiar interface used in
other state daemons. Thus where the IG model can be used,
the IGE can be used with ease to obtain a more accurate
state. Thermodynamic states and distributions calculated by
the TEST IGE model agree well with results from other
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established chemical equilibrium applications such as NASA
CEA [11, 36], and STANJAN [39].

Nomenclature

a: Number of different elements in the reacting
system

Ai, j : Number of atoms of type i in ideal gas j
bj : Number of atoms of type j in the reacting system
c◦p, j : Standard state specific molar heat capacity of

species j, J mol−1 K−1

ΔH◦
f : Standard state heat of formation

j: Index used to reference a gaseous species
Kp: Partial pressure equilibrium constant
l: Index used to reference a condensed species
m: Number of unique species in the product

composition
nj : Number of moles of species j
n: Total number of moles in the equilibrium

composition =∑m
j=1 nj

(g): Species in the gas phase
(l): Species in the liquid phase
H : Enthalpy, kJ
h◦: Specific molar enthalpy of the reactant mixture,

J mol−1

h◦j : Standard state specific molar enthalpy of species
j, J mol−1

T : Temperature, K
S: Entropy, KJ·K−1

s◦: Specific molar entropy of the reactant mixture,
J mol−1 K−1

s j : Specific molar enthalpy of species j, J mol−1 K−1

s◦j : Standard state specific molar entropy of species j,
J mol−1 K−1

U : Internal energy, kJ
P: Pressure, atm
Pj : Partial pressure of species j, atm
P◦: Standard state pressure = 1 atm
R: Ideal gas constant = 8.314472 J·K−1·mol−1

V : Volume, m3

yj : Mole fraction of species j
ηC : Compressor isentropic efficiency
φ: Equivalence ratio
μj : Chemical potential of the jth species, J·mol−1

μ◦j : Standard state chemical potential of the jth
species, J·mol−1.
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